Software Defined Services: Exchange Points (SDX) and ScienceDMZs (SD-SDMZ)

MAX Participants Meeting
April 5, 2017
College Park, Maryland

Tom Lehman
Director of Research
UMD/MAX

Xi Yang
Senior Research Scientist
UMD/MAX

Team and Research Projects

UMD/MAX Research Team

- Tom Lehman
- Xi Yang
- Alberto Jimenez
- Multiple Students

Results from several research projects including:

- Resource Aware Intelligent Network Services (RAINS)
- SENSE: SDN for End-to-end Networked Science at the Exascale

Office of Science

- GENI Enabled Software Defined Exchange (SDX)
- High Performance Computing with Data and Networking Acceleration (HPCDNA)

Today's Topics

- Edge Clouds in the form of a Software Defined ScienceDMZ (SD-SDMZ)
- Software Defined Exchange (SDX)
- Deployments at UMD/MAX and the Washington International Exchange (WIX)
- Services provisioning using the model-based multi-resource orchestration StackV Software developed by UMD/MAX team

Why Software Defined?

- Researchers are increasingly interested in an emerging class of hybrid services that integrate on-campus instrumentation and infrastructure, regional and national cyberinfrastructure, and elastic private and public clouds, over high performance networks.
- Research and Education (R&E) Cyberinfrastructure needs to evolve towards an "as a Service" model based on Software Defined Infrastructure (SDI)
- This transformation needs to address the unique requirements of the domain science communities
- Technologies and open source from the commercial focused Software Defined Network (SDN), Cloud, and Data Center communities can be leveraged, but alone are insufficient

Software Defined ScienceDMZ

- Traditional SDMZ: Bare metal Data Transfer Nodes (DTNs, perfSONAR nodes, manual switch/router control
- SD-SDMZ: Local Compute Cluster, OpenStack, Ceph, SDN Network Control. On Demand, scalable, traditional services and advanced hybrid cloud services

UMD SD-SDMZ

Software Defined in Context of R&E Cyberinfrastructure

OSCARS

NSI API

Ansible

OpenStack

ODL API

AWS API

ONOS API

OESS API

Others

UMD SD-SDMZ Services

Advanced Hybrid Cloud (AHC) Service

On Demand, Application Specific, Hybrid Topologies which include one of more of the following:

- ✓ Local OpenStack Virtual Machines (with SRIOV interfaces to network and storage)
- ✓ Dedicated Local Ceph Storage Resources and Connections
- ✓ Integrated AWS Resources (Virtual Private Cloud (VPC) or Public)
 - User controlled AWS resources, or
 - SD-SDMZ facility provided AWS resources (EC2, Storage, S3 endpoints)
- ✓ Network Connections
 - AWS Direct Connect integration for access to AWS Public or VPC resources
 - Layer2/Layer2 External Connections across Internet2, ESnet, others
 - Customized topology templates for individual user requirements
- ✓ Future:
 - Service connections/integration with other public cloud infrastructures
 - Service connections/integration with other R&E cloud, HPC, data repositories, etc.
 - Schedulable Services

UMD SD-SDMZ Services

Data Transfer Node (DTN) Service

SDMZ DTN service for data movement to/from HPC and other systems

- ✓ Built using AHC Service (Local OpenStack Virtual Machines with SRIOV interfaces to network and Ceph storage)
- ✓ Globus Endpoints for remote data transfer
- ✓ NFS Endpoints for local access and sharing
- ✓ Dataplane integration with HPC file systems (via IB/Ethernet Gateway)
- ✓ HPC System compute nodes mount SD-SDMZ CephFS
- ✓ On-Demand Scalable DTN infrastructure (dedicated DTN nodes on a per project or user basis available)

Hybrid Topology Building

 Orchestration across a diverse set of resources can be challenging. As an example to build this:

- Required steps include:
 - Instantiate tenant VMs and networks on local OpenStack, attach SR-IOV interfaces to local VMs, create dedicated Ceph images for VM mount
 - Configure AWS Direct Connect for proper VPC access
 - Provision a Layer2 path across MAX regional network to AWS
 - Instantiate AWS VPC resources
 - Instantiate a local VM with BGP configured for AWS peering
 - Configure proper private IP addressing and external gateway functions

Our Approach and Solution

- Multi-Resource Orchestration: integrating and orchestrating the network and network services with the things that attach to the network – compute, storage, clouds, and instruments.
- Model Driven: using models to describe resources in order to allow integrated reasoning, abstraction, and user centered services
- Intelligent Computation Services: Model driven, multi-resource computation services to enable orchestration services in response to high level user requests.
- We want to "Orchestrate the Automaters"

Model Driven Orchestration

- Modeling schemas based on Network Markup Language (NML).
- Developed extensions to allow resources which are connected to the network to also be modeled: Multi-Resource Markup Language (MRML)
 - https://github.com/MAX-UMD/nml-mrml
- Utilizes Resource Description Framework (RDF) and OWL 2 Web Ontology Language W3C Semantic Web Specifications

Software Defined Exchange (SDX)

- Same technology base can be used for SDX
- WIX is a production Exchange Point in McLean, Virginia (jointly operated by Internet2 and MAX)
- Includes OSCARS service enabling Dynamic Cross Connects
- MAX has made its AWS Direct Connect Service available at the WIX via Layer2 VLAN service
- MAX runs a
 GENI AM/
 VersaStack
 instance with
 OSCARS and
 AWS drivers

StackV Software

Architecture

Conceptual View

- UMD/MAX developed StackV is an open source model driven orchestration system:
 - github.com/MAX-UMD/stackV.community
 - video: tinyurl.com/umdmax-stackv
- Native StackV Application (Northbound) API
- Access via GENI Aggregate Manager API
- Multiple Drivers, Southbound APIs

SENSE Architecture - End-to-End Services

- SENSE Project Team
- ESnet (Lead), UMD/ MAX, ANL, Fermi, Caltech

Orchestration of distributed SDN/SDI services

Questions

Questions

- Are SD-SDMZ and SDX Services useful?
- What other services are desired?

Additional Information

 Contact us if you would like to know more, use services, or work together on SD-SDMZ/SDX development

Thanks

Extras

Example SD-SDMZ Use Cases

- Large Scale Geosimulation
 - Hybrid cloud topology to facilitate Hadoop cluster set up with local nodes and scalable bursting in to AWS
- Pan-STARRS Astronomy
 - Local compute/storage resources to facilitate
 download and inline processing of telescope data
- Global Land Cover Facility (GLCF)
 - Hybrid cloud topology to facilitate data download from R&E and AWS S3 locations to local HPC filesystem

GENI GEC 25 Demonstration – WIX March 14, 2016

"MAX AWS Service" at WIX

- Authorized users can provision a Layer 2 path thru WIX and utilize the MAX AWS Direct Connection to the US East-1 Region
- Multiple options for Layer 2 provisioning to and thru WIX for this service:
 - GENI Stitching, AL2S via OESS, OSCARS/NSI Service
 - MAX StackV Service
- Depending on use case, there may be several advantages to accessing AWS via Direct Connect, and also to connecting to a specific AWS region
- Contact MAX for further information if interested in trying this service

SD-ScienceDMZ Hardware/Software

Brocade MLXe:

- OpenFlow 1.3 Capable
- 5x100G Ports
- 4x40G Ports
- 24x10G Ports
- 48x1G Ports

Cisco Unified Computing System (UCS):

- 12 Compute Blades, dual socket, multi-core
- 2x2 redundant Fabric Interconnects with FEX technology
- 2x3548 Nexus OpenFlow capable switch
- running OpenStack Liberty

Ceph (Jewel)/Ethernet High Performance Parallel File System:

- 6 Object Storage Devices at 36 TB each (12x3TB drives)
- Approximately 200 Terabytes high performance cache storage
- CEPH parallel file system
- Each OSD chassis
 - 2U Chassis, 2 Intel Xeon E5-2609 Quad-Core, 2.4Ghz CPUs
 - 8GB Memory
 - LSI MegaRaid 9280-16i4 SAS, 6GB/s PCI-e RAID Card
 - Dual Port 10Gbe NIC card
 - 12 3 Tbyte SATA 6GB/s Hard Drives

StackV Functional Diagram

StackV
Open Source Model Driven Orchestration System

github.com/MAX-UMD/stackV.community

StackV Architecture

StackV Orchestration Engine

- •API Level Web Portal, Northbound Interface for Client Interface
- •Service Management Level Computation Engine, Worfklow Management
- •System View Level Unified topology view construction, Driver management
- •Resource Driver Level Southbound Interface to interact with resources